
1

Injecting Ilities
Robert E. Filman*

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive

Austin, Texas 78759-6509
filman@mcc.com

This paper discusses the use of aspect-oriented programming
technology to impose desirable system-wide properties on dis-
tributed systems.

Overcoming Complexity in Distributed Computing
The goal of the Microelectronics and Computer Technology Corporation’s (MCC) Object
Infrastructure Project (OIP) is to simplify the development and evolution of distributed,
object-oriented applications. OIP is designing and implementing an architecture where
ility-providing program elements (injectors) can be automatically wrapped around ap-
plication components. The task of specifying the appropriate injectors is separate from
the actual component coding.

Traditionally, software application development has been a monolithic process. An
organization building a software system presumed to know how it wanted that system
to behave. The requirements for that behavior would flow down to the construction of
the underlying modules. Since the modules were being built specifically for the system
in question, it was “straightforward” to get their developers to obey the rules and con-
form to defined standards. To the extent that the system used an externally provided
component such as a GUI or database, the behavior of that component would be ascer-
tained and the use of that component within the architecture of the system shaped to
match the external component's actual behavior.

Software development has gotten more complex. Technologies such as CORBA and
HTTP provide the glue for building applications from distributed components. But un-
derstanding the nuances of multiple components and varieties of glue can is itself an
intellectual challenge. We can't expect a single application programmer to become ex-
pert in the intricacies of many components, even if the application needs to use them all.
Similarly, components impose their own constraints on their usage. We want to develop
systems from components but don’t want the artifacts of a particular component manu-
facturer to permeate our designs, rendering us eternally dependent on the whims, de-
mands and destiny of that vendor. We want components that obey our policies—not to
have to distort our systems to match the policies of the components. And we want ways
to federate existing systems while still maintaining overarching rules and procedures.

* This paper describes work performed at MCC while the author was on assignment from Lock-

heed Martin Missiles and Space. LMMS contact information: Advanced Technology Center;
Lockheed Martin Missiles and Space; 3251 Hanover Street O/H1-43 B/255; Palo Alto, California
94304. Email: bob.filman@lmco.com.

Injecting Ilities 10/18/99

2

Distributed systems introduce additional complexity. Developing a distributed
system is in itself a more difficult task because distributed systems imply non-
deterministism(and non-determinism is complex), distribution introduces many addi-
tional kinds of failures, distribution is naturally less secure, and distribution’s inherent
decentralization is inconvenient to manage. Distributed computing can be made simpler
by making it look more like conventional programming and by providing and auto-
matically invoking correct implementations of distributed and concurrent algorithms.

Requirements
System development (ought to) follow from requirements. What kinds of requirements
are there? In [1], I proposed dividing requirements into four classes based on the "trac-
tability" of achieving the requirement: functional requirements that exhibit the primary
semantic behavior of a system and are typically locally realized, systematic requirements
that can be achieved by "doing the right thing" consistently throughout the program,
combinatoric requirements that are computationally intractable expressions of overall
system behavior (for example, guarantees of real-time behavior or limits on storage
footprint) and aesthetic requirements that express non-computable qualities of the sys-
tem (about which even wise men may differ.) The first of these is well supported by the
conventional development process ("The requirements say that a dialog box appears at
this time with the choices…") and the last two are difficult to automate in any case.

Aspect-oriented programming gives us a handle on systematic requirements. Al-
ways doing the right thing is hard for a single coder, no less a gaggle of hackers. Com-
puters, on the other hand, can be programmed to be tediously consistent. (Compilers are
programs that are tediously consistent in transforming other programs.)

What kinds of systematic requirements exist? Our applications should exhibit reli-
ability, security, scalability, extensibility, manageability, maintainability, interop-
erability, composability, evolvability, survivability, affordability, understandability, and
agility. (I've omitted a few.) Let us label these qualities ilities. The keen reader is likely to
ask, “So what exactly do you mean by, say, reliability?” Reliability requirements differ
for different applications and are likely to change over the lifetime of the application. The re-
liability requirement maps to executing specific algorithms that need to be invoked
systematically throughout the application. Some ilities are consequently manifestations
of properly defined and implemented requirements. The open scientific question is thus
(given the fuzzy definition of an ility) "Which ilities can be achieved by systematic ac-
tions, and what are the actions needed to achieve those ilities?"

Controlling communication

The OIP project is pursuing the thesis that certain interesting ilities (security, reliability,
manageability, quality of service) can be achieved by proper manipulation of the com-
munications between components and the significant events of a component’s lifecycle.
We are currently creating a set of tools to realize the transformation from specified ilities
to controlled communications, a reference architecture (set of rules defining component
interactions) and set of frameworks (realizations of that architecture in particular envi-
ronments) to demonstrate this thesis. A key observation of this work is that communi-
cation is not confined to the “actual text of a message” (for example, the procedure be-

Injecting Ilities 10/18/99

3

ing called and its arguments) but also allows arbitrary additional annotation—we pre-
sume to control both sides of the communication act.

Our efforts are aspect-oriented programming [2] in that we are separating the tasks
of creating the actual domain application from the code that produces security, reliabil-
ity, and such ilities. Our efforts can also be seen as an instance of the perpetual effort in
computer science to raise the “level” of supporting substrates. Tools such as CORBA
have enabled programmers to code to the specification of objects and methods. But re-
alizing elements such as security or reliability are still the responsibility of the applica-
tion programmer, and likely to be done incorrectly or incompletely by most such pro-
grammers. (A programmer expert in the workings of a satellite flight control system or
medical database is unlikely to also be expert in security and replication algorithms.)
This effort can thus be seen as a way to produce the “next generation” of CORBA-like
systems [3], where the application programmer no more worries about how to achieve
security than she does about mapping the location of a mouse click to a window’s but-
ton.

Applied ilities
Let us consider, for each of our target ilities, how communication and lifecycle control
can be used to affect or realize that ility, and the limits of that realization.

Security
Security (at least in a software sense) is primarily a combination of access control, intru-
sion detection, authentication, and encryption. Controlling the communication process
allows us to encrypt communications, reliably send user authentication from client to
server (and pass it along to dependent requests) and check the access rights of requests,
all independent of the actual application code. (However, depending on where the en-
cryption happens in the communication process, we may only be able to encrypt the
message data, not its headers.) Watching communications provides a locus for detecting
intrusion events [4] (though not, of course, specifying the actual algorithms for recog-
nizing an intrusion.) These mechanisms can all be imposed on a component-based sys-
tem by controlling its communications. (Such mechanisms cannot, however, prevent
subverting a system’s personnel, tapping communication lines, brute-force cracking of
encryption codes, or components that cheat by opening their own socket connections.)

Manageability
The International Standards Organization has defined five elements to manageability:
performance measurement, accounting, failure analysis, intrusion detection, and con-
figuration management. The first four of these can be implemented by generating events
in relevant circumstances and directing those events to the appropriate recipients. To
the extent that the semantics of these events can be tied to communication acts (e.g.,
each time a service is called, a micro-payment for that service is processed, or the trace
of inter-component messages is sent to a system’s debugger) then they can be realized
through external communication controls. To the extent that the interesting actions
happen completely within the application components (e.g., payment is due propor-
tional to the number of records accessed by a database service or debugging wholly
within a component) then this technique will prove inadequate.

Injecting Ilities 10/18/99

4

Configuration management is partially an issue of object lifecycle. Communication
control can be used to dynamically determine if appropriate configurations are in use
and to automatically update stale configurations.

Reliability
Our primary experiments in supporting reliability have centered on using replication
for reliability [5]. Replication algorithms typically need to send copies of messages to
replicants, but our work has also revealed that message replication is insufficient for
practical replication. Rather, the application needs to be written to express its operations
in symbolic terms, not in terms of addresses in a specific replicant’s address space.

Similarly, I believe transaction management would (practically) yield to communi-
cation control only if the managed objects provide the necessary primitives (locking and
rollback.) These points illustrate the limitations of pure communication control in the
presence of monolithic compents, even given the existence well-defined algorithms.

Quality of service
By quality of service I mean to encompass a variety of requirements for getting things
done within time constraints. The real-time community recognizes two varieties of real-
time systems, hard real-time and soft real-time. Hard real-time systems have tasks that
must be completed at particular deadlines, or else the system is incorrect. Soft real-time
systems seek to allocate resources so as to accomplish the most important things. To
achieve hard real-time systems, one can either reserve resources and plan consumption
or use an anytime algorithm. Aside from that latter, somewhat esoteric choice, hard
real-time requires cooperation throughout the processing chain (for example, in the un-
derlying network), for the promise of particular service can be abrogated in too many
places. That is, you can’t get hard real-time unless you build your entire system with
that in mind. It’s a combinatoric requirement. (Doug Schmidt's work on Real-Time
CORBA ORBs [6] illustrates this point: commercial ORBs, built without constant real-
time mindfulness, conceal FIFO queues and exhibit anti–real-time behavior.)

Soft real-time quality of service is amenable to several communication control tac-
tics. These include calling the underlying system’s quality of service primitives, using
side-door mechanisms to efficiently transport large quantities of data (e.g., opening a
socket to send a movie, thereby avoiding CORBA coding and decoding), using queue
control to identify the most worthwhile thing to do next [7] and by choosing among
multiple ways of problem solving. All of these except the last are well within the scope
of communication control, and if the application supplies the alternative problem solv-
ing methods (either by replicating the problem solving sites or providing genuinely dif-
ferent algorithms) the communication control mechanism can learn (based on historical
timing data and communications with other clients) the most efficient problem solvers.

Implementation
A few remarks on OIP implementation are worth mentioning. The underlying compu-
tational model is to wrap components with a sequence of injectors. Systems like CORBA
and Java RMI support a stub/skeleton proxy mechanism for distributed communica-
tion. (In fact, several commercial ORBs include the ability to specify some user-defined
filters on communications. Such filters are required by the yet-to-become-commercially-

Injecting Ilities 10/18/99

5

available CORBA security service.) OIP injectors are individuated by proxy/method
and can, with the appropriate access controls, be changed for a particular proxy.

Injectors can both read and write not only the application program arguments, but
also the annotations associated with the message. Thus, the annotation mechanism sup-
ports communications among injectors.

Annotations can be understood to be the procedure-call analog of mail headers.
Certain headers have common meanings ("From" and "To") while others are more spe-
cialized to particular programs ("X-Sun-Charset"). Our experience with OIP has sug-
gested an initial set of common annotations (including session identification, request
priority, sending and due dates, version and configuration, answer futures, cyber wal-
let, public key, sender identification and conversational thread.) Thus, a request can be
identified as having a specific priority and injectors can change their actions based on
that priority (for example, to queue incoming requests and execute the highest priority
request next, as was done in [7].)

Security concerns about the use of injectors can be reduced by requiring an injector
to declare which annotations it reads and writes (and enforcing that declaration). We
may be more willing to use a plug-in injector obtained from a random site if we know
that all it does is read the sending and due dates of messages than if it claims to alter
sender identification and message text. (The former could be used to support an adap-
tive real-time mechanism such as the one described in [8].)

OIP also supports chaining of annotations through called threads. Thus a routine
called with a priority of X will make calls at priority X (unless the thread explicitly
changes the priority).

Selection of which initial injectors to use for which methods of which classes is
done by a compiler that takes a language of injector specifications and builds the appro-
priate default structures for the run-time system. This language provides a level of indi-
rection between desired ilities and their implementations, and allows the successive re-
finement of policies through an organization. This use of a separate specification lan-
guage for creating filters parallels the work at BBN on QoS [9], where an IDL-like Qual-
ity Description Language is woven with IDL to affect system performance.

I also note that Videira Lopes and Kiczales also apply communication control to
distribution for the aspects of synchronization and distribution [10].

Concluding remarks
I have argued that high-level, desirable system-level properties can be achieved in a
component-based system by systematically controlling the inter-component communi-
cations and component lifecycle. Our initial experiments have lent credence to this hy-
pothesis, subject to the caveats that some algorithms (e.g., transactions) require coop-
eration on the part of the application, and that our desire for system-level properties
(e.g., security) must be kept within the range of definable mechanisms. Our work con-
tinues on developing the mechanisms to automate this process and testing our thesis.

Acknowledgments
The ideas expressed in this paper have emerged from the work of the MCC Object Infra-
structure Project, particularly Stu Barrett, Carol Burt, Deborah Cobb, Tw Cook, Phillip
Foster, Diana Lee, Barry Leiner, Ted Linden, David Milgram, Gabor Seymour, Doug
Stuart and Craig Thompson. Some of these ideas have been expressed in reference [1].

Injecting Ilities 10/18/99

6

My thanks to Tw Cook, Diana Lee, Ted Linden, Dave Milgram and Tom Shields for
comments on the drafts of this paper.

References
[1] Robert E. Filman, "Achieving Ilities," Workshop on Compositional Software Architectures, Mon-

terey, California, Jan. 1998.
http://www.objs.com/workshops/ws9801/papers/paper046.doc

[2] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin “Aspect-Oriented Programming, ” Xerox PARC Technical Re-
port, February 97, SPL97-008 P9710042.
 http://www.parc.xerox.com/spl/projects/aop/tr-aop.htm

 [3] Craig Thompson, Ted Linden and Bob Filman, “Thoughts on OMA-NG: The Next Genera-
tion Object Management Architecture,” Presented at the OMG Technical Meeting, Dublin,
Ireland, September, 1997.
http://www.mcc.com/projects/oip/next_oma.html

[4] Robert Filman and Ted Linden, “Communicating Security Agents,” The Fifth IEEE-
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises---
International Workshop on Enterprise Security, Stanford, California, June 1996, pp. 86-91.

[5] Stu Barrett and Phillip Foster, “Turning Java Components into CORBA Components with
Replication,” OMG-DARPA-MCC Workshop on Compositional Software Architectures,
Monterey, California, Jan. 1998.
http://www.objs.com/workshops/ws9801/papers/paper067.doc

[6] Douglas C. Schmidt, Rajeev Bector, David L. Levine, Sumedh Mungee, and Gurur Parulkar,
"An ORB Endsystem Architecture for Statically Scheduled Real-time Applications," Proc.
IEEE Workshop on Middleware for Distributed Real-time Systems and Services, San Francisco, Dec.
1997, pp. 52-60.

[7] Diana Lee and Robert Filman, “Verification of Compositional Software Architectures,”
OMG-DARPA-MCC Workshop on Compositional Software Architectures, Monterey, Cali-
fornia, Jan. 1998.
http://www.objs.com/workshops/ws9801/papers/paper096.html

[8] M. Gergeleit, E. Nett, and M. Mock, "Supporting Adaptive Real-Time Behavior in CORBA,"
Proc. IEEE Workshop on Middleware for Distributed Real-time Systems and Services, San Fran-
cisco, Dec. 1997, pp. 61-67.

[9] Richard Schantz, David Bakken, David Karr, Joseph Loyall, and John Zinky, "Distributed
Objects with Quality of Service: An Organizing Architecture for Integrated System Proper-
ties," OMG-DARPA-MCC Workshop on Compositional Software Architectures, Monterey,
California, Jan. 1998.
http://www.objs.com/workshops/ws9801/papers/paper099.doc

[10] Cristina Videira Lopes, and Gregor Kiczales, "D: A Language Framework For Distributed
Programming," Xerox PARC Technical report, February 97, SPL97-010 P9710047.
http://www.parc.xerox.com/spl/projects/aop/tr-d.htm

